Research Article

Louis Forto Chungong, Mark A. Isaacs, Alexander P. Morrell, Laura A. Swansbury, Alex C. Hannon, Adam F. Lee, Gavin Mountjoy, and Richard A. Martin*

Insight into the atomic scale structure of CaF₂-CaO-SiO₂ glasses using a combination of neutron diffraction, ²⁹Si solid state NMR, high energy X-ray diffraction, FTIR, and XPS

https://doi.org/10.1515/bglass-2019-0010
Received Aug 12, 2019; revised Oct 17, 2019; accepted Nov 03, 2019

Abstract: Bioactive glasses are important for biomedical and dental applications. The controlled release of key ions, which elicit favourable biological responses, is known to be the first key step in the bioactivity of these materials. Properties such as bioactivity and solubility can be tailored for specific applications. The addition of fluoride ions is particularly interesting for dental applications as it promotes the formation of fluoro-apatite. To date there have been mixed reports in the literature on how fluorine is structurally incorporated into bioactive glasses. To optimize the design and subsequent bioactivity of these glasses, it is important to understand the connections between the glass composition, structure and relevant macroscopic properties such as apatite formation and glass degradation in aqueous media. Using neutron diffraction, high energy X-ray diffraction, ²⁹Si NMR, FTIR and XPS we have investigated the atomic scale structure of mixed calcium oxide / calcium fluoride silicate based bioactive glasses. No evidence of direct Si-F bonding was observed, instead fluorine was found to bond directly to calcium resulting in mixed oxygen/fluoride polyhedra. It was therefore concluded that the addition of fluorine does not depolymerise the silicate network and that the widely used network connectivity models are valid in these oxyfluoride systems.

Keywords: Bioactive glass, fluoride, structure, network connectivity

1 Introduction

Bioactive glasses are important for biomedical and dental applications. These materials promote the formation of apatite, the mineral content of bone and enamel, through a process of ion dissolution followed by precipitation [1–3]. The addition of fluorine to bioactive glasses is potentially beneficial in preventing demineralisation, enhancing enamel remineralisation and preventing bacteria metabolism [4–6]. Fluoride ions in bioactive glasses are known to be beneficial for their antibacterial efficacy and promoting acidic resistance apatite [3, 7].

To understand, model and predict the behaviour of these glasses and ultimately improve their design, it is important to understand their structure. Ions are released from bioactive glasses under physiological conditions and the release of these biologically important ions are responsible for bioactivity. There is a strong correlation between the nature of the glass composition, its structure and network connectivity and the cross-linking density. Bioactive glasses are biodegradable providing a controlled release of Ca, P and Si ions [8]. High concentrations of calcium, released from the glass, combine with phosphorous either released by the glass and/or from body fluids and precipi-
tate to form apatite. Most studies to date have focused on 45S5 Bioglass®, and the structural role of calcium introduced in oxide form has been studied extensively and is well understood [9–12]. The addition of alkali or alkaline earth oxides depolymerises the glass network by breaking Si-O-Si bonds and thereby increasing dissolution, however the effect of introducing Ca in other forms such as CaF₂ is less well known.

Calcium has been successfully incorporated into glasses as CaF₂ to develop novel bioactive glasses for orthopaedic and dental implants, and for use in toothpaste [13]. In aqueous media fluoride doped bioactive glasses will form an acid resistant fluorapatite which is beneficial for dental applications [14, 15]. In designing novel bioactive glasses for biomedical applications, a fundamental understanding of how the glass composition affects its structure is key as this will impact on the resulting macroscopic properties. There are mixed reports on how fluorine is incorporated into the glass structure and even mixed reports on whether the incorporation of calcium fluoride is beneficial. Ebisawa et al. [16] reported suppressed apatite formation on CaO-SiO₂ glass surfaces through CaF₂ addition, finding that CaF₂ decreases the dissolution of calcium ions promoting the formation of a silica rich layer. Spectroscopic studies by Hayashi et al. [17] showed that CaF₂ in silicate glasses depolymerizes the silicate network forming Si-F bonds. Iwamoto et al. [18] also reported Si-F bonds are present for CaF₂ < 7 mol%, however for CaF₂ > 7 mol% they observed that fluorine bonds with Ca. Tsunawaka et al. [19] reported that CaF₂ depolymerises the silicate network for CaF₂ concentrations <15-20 mol% for CaO/SiO₂ <1, but ¹⁹F NMR studies on CaO-CaF₂-SiO₂ glasses by Watanabe et al. [20] found that F was surrounded by ~4 calcium atoms with no detectable Si-F bonds for CaO/SiO₂ = 0.5 - 1.3 and 5 - 25 mol% CaF₂. Lusvardi et al. [21] reported ~2% Si-F bonds formed for CaF₂ content ≥ 20%. Here we report a detailed multi-technique structural investigation combining neutron diffraction, high energy X-ray diffraction, ²⁹Si solid-state NMR, FTIR and XPS with the objective of elucidating the structural role of fluorine in bioactive glasses.

Table 1: Nominal glass composition and densities, standard deviations in parenthesis

<table>
<thead>
<tr>
<th>Glass code</th>
<th>Nominal glass composition (mol%)</th>
<th>Melting Temp. (°C)</th>
<th>Density (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF 3.3</td>
<td>SiO₂ 48.4 CaO 48.4 CaF₂ 3.3</td>
<td>1540</td>
<td>2.98(2)</td>
</tr>
<tr>
<td>GF 6.6</td>
<td>SiO₂ 46.7 CaO 46.7 CaF₂ 6.6</td>
<td>1530</td>
<td>2.97(4)</td>
</tr>
<tr>
<td>GF 9.3</td>
<td>SiO₂ 45.3 CaO 45.3 CaF₂ 9.3</td>
<td>1520</td>
<td>2.97(1)</td>
</tr>
<tr>
<td>GF 11.9</td>
<td>SiO₂ 44.1 CaO 44.1 CaF₂ 11.9</td>
<td>1510</td>
<td>2.99(3)</td>
</tr>
<tr>
<td>GF 16.1</td>
<td>SiO₂ 41.9 CaO 41.9 CaF₂ 16.1</td>
<td>1495</td>
<td>2.98(4)</td>
</tr>
</tbody>
</table>

2 Method

2.1 Glass preparation

Melt-quenched glass samples were prepared using SiO₂ (Alfa Aesar, 99.5%), CaF₂ (Alfa Aesar 99.5%) and CaCO₃ (Alfa Aesar, 99.96-100.05%) precursors. Each precursor was carefully weighed to give the appropriate molar concentrations and the chemicals were then thoroughly mixed before being placed into a 90% Pt · 10% Rh crucible. The crucible and precursors were then placed into a furnace at room temperature which was then heated at a rate of 10°C/minute under flowing argon to a final temperature between 1495°C and 1530°C. After homogenising for 1 h at this temperature, the liquids were rapidly splat-quenched between two graphite blocks to form glasses. To avoid potential absorption of moisture from air the glasses were stored in a desiccator. Glass densities were measured using helium pycnometry (Multipycnometer, Quantachrome Instruments). Nominal glass compositions are given in Table 1. As shown, glass compositions are written in the form (CaO)₅₀−ₓ/(SiO₂)₅₀−ₓ(CaF₂)x, where x varied between 3.3 and 16.1 mol%. This ensures a constant Si:O ratio to help highlight structural differences in the network caused by CaF₂ addition.

2.2 Neutron diffraction

Neutron diffraction spectra were collected using the GEneral Materials (GEM) diffractometer at the ISIS neutron and muon source, Rutherford Appleton Laboratory, UK [22]. The glass samples were coarsely ground and then loaded in a thin walled cylindrical 6 mm internal diameter vanadium container. Interference patterns were collected for each of the five bioactive glass samples as well as an empty
vanadium container, a vanadium niobium null alloy (0.941 V: 0.059 Nb) and the empty GEM instrument which are necessary to perform the appropriate data corrections. All measurements were undertaken at ambient temperature. Data corrections including background scattering, inelastic, multiple and self-scattering were performed using GUDRUN [23]. Following these corrections, the resultant neutron diffraction interference function, \(i(Q) \), is defined by

\[
i(Q) = \sum_i \sum_j c_i c_j b_{ij} [p_{ij}(Q) - 1]
\]

where \(c_i \), \(c_j \), \(b_i \) and \(b_j \) represent the atomic concentration and coherent scattering length of the chemical species \(i \) and \(j \) respectively, and \(p_{ij}(Q) \) is the structure factor. Fourier transformation of \(i(Q) \) generates the total correlation function, \(T(r) \), given by

\[
T(r) = T^0(r) + \frac{2}{\pi} \int_0^{\infty} Qi(Q)M(Q) \sin(Qr)dQ
\]

where \(M(Q) \) is a Lorch window function that considers the finite maximum experimentally attainable value of \(Q \) and \(T^0(r) \) is the average density term, given by

\[
T^0 = 4\pi \rho^0 (\sum_i c_i b_i)
\]

Important structural information can be obtained by modelling the real-space correlation functions. The pair functions are given by:

\[
p_{ij}(Q)_{ij} = \frac{N_{ij} w_{ij}}{c_j} \frac{\sin Q r_{ij}}{Q r_{ij}} \exp\left(\frac{-Q^2 \sigma_{ij}^2}{2}\right)
\]

where \(N_{ij}, r_{ij} \) and \(\sigma_{ij} \) represent the coordination number, atomic separation and disorder parameters respectively. The weighting factor \(w_{ij} \) is given by:

\[
w_{ij} = 2c_i c_j b_{ij} b_{ji} \quad \text{if } i \neq j
\]

\[
w_{ij} = c_i^2 b_{ij}^2 \quad \text{if } i = j
\]

Atomic bond distances, coordination numbers and the disorder parameters were fitted for the glasses using NX-Fit [24].

2.3 High energy X-ray diffraction

High energy X-ray diffraction data were collected at the I-15 beamline, Diamond Light Source, Harwell, UK. The instrument collected data in a 2\(\theta \) geometry with a Si (311) Bent Laue monochromatic, \(E = 76.7 \text{ keV}, \lambda = 0.162 \text{ Å} \). This setup gave a 2\(\theta \) range of 58\(^\circ\) resulting in a \(Q_{\text{max}} \) of 38 Å\(^{-1}\). Glass samples were ground into fine powders and loaded into silica glass capillaries with an inner diameter of 1.17 mm, an outer diameter of 1.5 mm, and a height of 40 mm. All measurements were conducted at room temperature and the measurement time per sample was 10 min. An empty capillary was measured for background corrections. The data was corrected for the empty capillary, normalisation, attenuation, absorption, Compton scattering, X-ray beam polarisation, Bremsstrahlung, fluorescence and subtraction of self-scattering term using the program GUDRUNX [25].

The total X-ray interference function \(i^x(Q) \) is given as

\[
i^x(Q) = \frac{I^{coh}(Q) - \sum_{i=1}^n c_i f_i(Q)}{\sum_{i=1}^n c_i f_i(Q)^2}
\]

Fourier transforming the X-ray interference function yields the real space correlation \(T^x(r) \) given as

\[
T^x(r) = 4\pi \rho^0 (\sum_i c_i a_i^2)^2 + \frac{2}{\pi} \int_0^{\infty} Qi(Q)M(Q) \sin(Qr)dQ
\]

where \(r \) is the distance from an arbitrary atom at the origin, \(\rho^0 \) is the number density in units of Å\(^{-3}\) and \(a_i \) is the atomic number. The resulting X-ray peak function for two distinct atomic species normalised with the sharpening function were produced with an X-ray weighting factor given as

\[
w^x_{ij} = \frac{(2 - \delta_{ij})c_i c_j f_i(Q) f_j(Q)}{|f_i(Q)|^2}
\]

where \(\delta_{ij} \) is the Kronekar delta function \(\delta_{ij} = 1 \) if \(i = j \) and \(\delta_{ij} = 0 \) if \(i \neq j \) while \(c_i, c_j, f_i(Q), f_j(Q) \) are the concentrations and form factors of two atomic species \(i, j \) respectively.

2.4 \(^{29}\)Si NMR

Solid state NMR spectra were obtained at the EPSRC UK National Solid-state NMR service at Durham on a 4.0 mm pencil Varian VNMRS 400 MHz spectrometer. The observed \(^{29}\)Si spectra were acquired with a frequency of 79.438 MHz, spectral width of 40322.6 Hz, acquisition time of 12.7 ms, and repetitions in the range 184-500 were accumulated with a recycling time of 120 s at ambient temperature. Direct excitation had a pulse duration of 5.0 \(\mu \)s with a two pulse phase modulated decoupling [26] spin rate of 8039 - 9128 Hz. Samples were referenced to neat tetramethysilane (0 ppm) [27].
Insight into the atomic scale structure of CaF$_2$-CaO-SiO$_2$ glasses

2.5 Fourier Transform Infrared spectroscopy

Fourier Transform Infrared (FTIR) spectroscopy was used to probe the local symmetry of the glass network, revealing structural information on the different vibrational modes present [28, 29]. Data was collected in transmission mode using a Thermo Nicolet iS50 infrared spectrometer with a single bounce diamond attenuated total reflection (ATR) crystal. Spectra were recorded in the range 400 - 4000 cm$^{-1}$ with a step size of 0.05 cm$^{-1}$. All measurements were undertaken at room temperature. Each sample had 64 scans measured and the spectra was processed using OMNIC version 9.

2.6 X-ray photoelectron spectroscopy

Glass samples were affixed to the sample stage using carbon tape. Samples were evacuated until a pressure of 10^{-8} Torr was obtained. All data was recorded on a Kratos HSI spectrometer using a monochromated Al X-ray source (1486.7 eV). Sample alignment was performed using a z-scan at 1200 eV, with an X-ray power of 75 W and a step size of 0.05 mm. Survey spectra were recorded with a pass energy of 160 eV and X-ray power of 225 W. High resolution spectra were recorded with a pass energy of 20 eV and an X-ray power of 225 W. An electron flood gun was employed to neutralise charge accumulation. Data was analysed using CasaXPS v.2.3.19PR1.0. Data was energy calibrated to adventitious C 1s at 284.8 eV, Shirley background-subtracted and fitted with GL(30) lineshapes. Calcium 2p spectra were fitted using a 3.5 eV spin-orbit doublet separation and silicon 2p spectra using a 0.6 eV spin-orbit doublet separation. Quantitation was performed by integration of the high resolution spectra and application of instrument response factors.

3 Results

A series of calcium fluoride / calcium oxide silicate glasses were successfully prepared by splat quenching the melt between two graphite blocks. The glasses were visibly transparent with no obvious signs of crystallisation up to 16.1 mol% CaF$_2$. The amorphous nature of these materials was later confirmed by the absence of Bragg peaks in the X-ray and neutron diffraction data (presented below). Glasses with CaF$_2$ concentrations greater than 16.1 mol% predominantly crystallized upon quenching and were therefore discarded. It is challenging to measure the concentrations of oxygen and fluorine in glasses as these light elements are not easily detected. However, the weight of glass manufactured for each composition was as expected based on the weight of the starting batch and allowing for the loss of carbon dioxide from the calcium carbonate. This strongly suggested that there was no significant loss of CaF$_2$ or even SiF$_4$ (as previously reported). Hence we conclude that the nominal compositions in Table 1 are valid. Experimental glass densities for the present study are shown in Figure 1(a) and were approximately independent of CaF$_2$ content. These density results are in agreement with previous reports by Watanabe et al. [30] and Susa et al. [31] for similar composition glasses.

The corresponding oxygen density (Figure 1b) was obtained according to equation 10 [32, 33]

$$\rho^0 = \frac{M(O) \times (2Y_{\text{SiO}_2} + Y_{\text{CaO}})}{M_v}$$

where ρ^0 is the oxygen density, $M(O)$ is the molar mass of oxygen atom, Y is the molar concentration of the respective oxides and M_v is the molar volume of the glass. The oxygen density decreases linearly ($R^2 = 0.9997$) with CaF$_2$ content as expected.
Normalised neutron and X-ray weighting factors for the glasses GF 6.6 and GF 16.1 are given in Figure 2. X-rays are more sensitive to heavy atoms, whilst neutron scattering is empirical with no direct correlation with atomic number. Neutron scattering was dominated by the O-O correlation, particularly for glasses with low CaF$_2$ concentrations, whereas X-ray scattering was more sensitive to calcium correlations.

Neutron diffraction interference functions $i^N(Q)$ for the (CaO)$_{50-x/2}$(SiO$_2$)$_{50-x/2}$(CaF$_2$)$_x$ series are shown in Figure 3a. The reciprocal space data was modelled to $Q_{max} = 50$ Å$^{-1}$ but is only shown out to 25 Å$^{-1}$ for clarity. Figure 3b shows the corresponding real space data, $T^N(r)$, obtained by Fourier transforming $i^N(Q)$ over the full range (0<Q(Å$^{-1}$)<50) using a Lorch modification function [35]. The X-ray interference functions $i^X(Q)$ are shown in Figure 4a with the corresponding real space data, $T^X(r)$, is shown in Figure 4b.

The shortest real space correlation ~1.6 Å is expected to correlate with Si-O bonds, however Si-F bonds (if present) would also occur in the same region overlapping with Si-O correlations. There is little variation in the coherent scattering lengths of O ($b_c = 5.803$ fm) and F ($b_c = 5.654$ fm) [36] which also makes it difficult to distinguish Si-O and Si-F correlations based solely on neutron diffraction data. The similarity in O and F atomic numbers also hinders differentiation of Si-O and Si-F by X-ray diffraction. Complimentary 29Si solid state NMR spectroscopy is therefore required to resolve such correlations (Figure 5); spectra were similar for all glass compositions, exhibiting a broad peak at $\delta_{SiO} = -80.3$ ppm (FWHM ~13 ppm) assigned as a Q2 silicate [9, 34], of common intensity. These results do not preclude the presence of a small amount of Q1 / Q3 units, however significant Si-F bonds would induce a large distortion in the Si-O tetrahedra, resulting in a downfield NMR shift due to the high electronegativity of F$^-$ relative to O2-. We can therefore conclude that SiO$_4$ are in the same chemical environment in all samples, suggesting the absence of Si-F bonds.

IR bands around 850 cm$^{-1}$ and 915 cm$^{-1}$ are characteristic of Si-O silicate tetrahedra with two non-bridging and two bridging oxygens respectively [28, 29, 37]. FTIR spectra (Figure 6) of our glasses reveal bands at 850 cm$^{-1}$ and 898 cm$^{-1}$, which correlate well with those at 840-850 cm$^{-1}$.
Figure 4: (a) X-ray diffraction reciprocal and (b) real space correlations for the fluoride glasses. Diffraction patterns offset for clarity

Table 2: F 1s and Ca 2p Binding energies (BE) and FWHM

<table>
<thead>
<tr>
<th>Glass code</th>
<th>Ca 2p <sub>3/2</sub> BE / eV (±0.2)</th>
<th>Ca 2p <sub>1/2</sub> BE / eV</th>
<th>FWHM / eV</th>
<th>Si 2p BE / eV</th>
<th>FWHM / eV</th>
<th>F 1s BE / eV (±0.2)</th>
<th>FWHM / eV</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF 3.3</td>
<td>348.4</td>
<td>351.4</td>
<td>3.5</td>
<td>102.5</td>
<td>2.05</td>
<td>685.4</td>
<td>2.8</td>
</tr>
<tr>
<td>GF 6.6</td>
<td>348.3</td>
<td>351.4</td>
<td>3.1</td>
<td>102.2</td>
<td>2.02</td>
<td>685.3</td>
<td>2.7</td>
</tr>
<tr>
<td>GF 9.3</td>
<td>348.1</td>
<td>351.4</td>
<td>3.3</td>
<td>102.4</td>
<td>2.1</td>
<td>685.1</td>
<td>2.6</td>
</tr>
<tr>
<td>GF 11.9</td>
<td>347.5</td>
<td>351.6</td>
<td>3.2</td>
<td>102.4</td>
<td>1.9</td>
<td>685.0</td>
<td>2.7</td>
</tr>
<tr>
<td>GF 16.1</td>
<td>347.5</td>
<td>351.4</td>
<td>3.4</td>
<td>102.2</td>
<td>2.05</td>
<td>685.2</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Figure 5: Solid state ²⁹Si MAS NMR data

Figure 6: FTIR spectra for the glass series. Si-F features would be expected ~940 cm⁻¹

Figure 7 shows the Ca 2p, Si 2p and F 1s XP spectra, with corresponding binding energies and FWHM shown in Table 2. The chemical environment of all elements was approximately independent of CaF₂ content. Calcium exhibited two peaks associated with the 2p_{3/2} and 2p_{1/2} spin-orbit split doublet at 3475 eV and 351 eV binding energies respectively (Figure 7a); the former broad 2p_{3/2} photoemission was significantly higher than typical for calcium oxide (346.6 eV) [42], and lower than observed for calcium fluoride (348.4) [43]. For calcium silicate the emission re-
Table 3: Neutron diffraction structural parameters obtained by fitting $T^N(r)$

<table>
<thead>
<tr>
<th>Glass</th>
<th>SiO</th>
<th>CaO$_{\text{NB}}$</th>
<th>O-(Si)-O</th>
<th>CaO$_B$</th>
<th>CaF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r(Å)</td>
<td>N</td>
<td>σ(Å)</td>
<td>r(Å)</td>
<td>N</td>
</tr>
<tr>
<td>GF 3.3</td>
<td>1.63</td>
<td>3.9</td>
<td>0.06</td>
<td>2.37</td>
<td>5.3</td>
</tr>
<tr>
<td>GF 6.6</td>
<td>1.63</td>
<td>3.9</td>
<td>0.06</td>
<td>2.37</td>
<td>5.1</td>
</tr>
<tr>
<td>GF 9.3</td>
<td>1.63</td>
<td>3.9</td>
<td>0.06</td>
<td>2.37</td>
<td>4.7</td>
</tr>
<tr>
<td>GF11.9</td>
<td>1.63</td>
<td>4.0</td>
<td>0.06</td>
<td>2.37</td>
<td>4.7</td>
</tr>
<tr>
<td>GF16.1</td>
<td>1.63</td>
<td>4.1</td>
<td>0.06</td>
<td>2.37</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Figure 7: (a) Ca 2p and (b) Si 2p and (c) F 1s XP spectra. Dotted lines indicate raw spectra, dashed lines indicate the fitted peak envelopes, and the solid red line represents the overall fit.

reported with a binding energy of ~347.2 eV [43], and so we postulate that the majority of Ca in our materials is present as the silicate or in a mixed oxide/fluoride environment. The F 1s binding energy of ~684.5 eV (Figure 7c) is similar to that in crystalline CaF$_2$ (684.3 eV) [44]; previous studies suggest that F in covalent Si-F bonds has a binding energy of 687.1 eV [45], of which there is no evidence in our glasses. We conclude that F bonds predominantly to Ca and does not change the nature of silicate network at CaF$_2$.

Returning to the diffraction patterns (Figures 3 and 4), real space correlations can now be modelled. In the absence of direct Si-F bonds, the first (shortest distance) diffraction peak was modelled assuming only Si-O correlations. Figure 8 shows neutron diffraction fits for the GF 6.6 and GF 16.1 glass samples and individual atomic partial pair correlations as representative fits; structural parameters from fitting $T^N(r)$ are given in Table 3. The Si-O peak is well resolved with peak positions ~1.63 Å and coordination numbers ~4.0(1) for all the glass compositions, confirming that Si-O tetrahedra are unaffected by CaF$_2$ addition. The Si-O peak positions and coordination numbers are similar to previous reports for fluoride-free bioactive glasses [9, 34].

The second larger real space feature (2<r(Å)<3) corresponds to O-(Si)-O and Ca-O correlations. As previously reported, the Ca-O correlation comprises a shorter non-bridging (Ca-O$_{\text{NB}}$) and longer bridging (Ca-O$_B$) contribution [9]. Ca-F correlations are also anticipated in this region [30], the Ca-O structure, bond distances and coordination number is extremely diverse in related crystalline structures [46]. For example in cuspidine (Ca$_4$F$_2$Si$_2$O$_7$) Ca has three distinct sites with coordination numbers of 7, 7, 8 [47] and in crystalline β-CaSiO$_3$ the coordination numbers are 6, 6 and 7 respectively [12]. For a silicate tetrahedron, using simply geometry, the O-(Si)-O distance is expected to occur at $\sqrt{\frac{8}{3}}$~2.65 Å [34]. Using the network connectivity model (which we now know to be valid since the addition of fluorine does not disrupt the network connectivity) the O-(Si)-O coordination number can be calculated using the Q^n value determined from 29Si NMR. For
Insight into the atomic scale structure of CaF$_2$-CaO-SiO$_2$ glasses

Background

Figure 8: The real-space total diffraction patterns, $T^N(r)$, and the individually fitted pair correlation functions for GF 6.6 and GF 16.1. Colour online.

Figure 9: The real-space total diffraction patterns, $T^X(r)$, and the individually fitted pair correlation functions for GF 6.6 and GF 16.1. Colour online.

Table 4: High energy X-ray diffraction output parameters obtained from fitting $T^X(r)$

<table>
<thead>
<tr>
<th>Glass</th>
<th>SiO</th>
<th>CaO$_{NB}$</th>
<th>O-(Si)-O</th>
<th>CaO$_B$</th>
<th>CaF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r(Å)</td>
<td>N</td>
<td>σ(Å)</td>
<td>r(Å)</td>
<td>N</td>
</tr>
<tr>
<td>GF 3.3</td>
<td>1.63</td>
<td>3.8</td>
<td>0.09</td>
<td>2.39</td>
<td>5.1</td>
</tr>
<tr>
<td>GF 6.6</td>
<td>1.63</td>
<td>3.8</td>
<td>0.09</td>
<td>2.39</td>
<td>4.9</td>
</tr>
<tr>
<td>GF 9.3</td>
<td>1.63</td>
<td>3.8</td>
<td>0.09</td>
<td>2.37</td>
<td>4.6</td>
</tr>
<tr>
<td>GF11.9</td>
<td>1.63</td>
<td>3.8</td>
<td>0.09</td>
<td>2.37</td>
<td>4.6</td>
</tr>
<tr>
<td>GF16.1</td>
<td>1.63</td>
<td>3.8</td>
<td>0.08</td>
<td>2.39</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Q2 species, a non-bridging oxygen has three nearest neighbours and a bridging oxygen has six nearest neighbours. It can therefore be calculated that the O-(Si)-O coordination in a Q2 species has a coordination number of four at 2.65Å. The complex overlapping correlation around $2 < r(Å) < 2.8$ has therefore been simplified using Q0 speciation in conjunction with a network connectivity model, and verified by 29Si NMR.

To enable direct comparison between the X-ray diffraction and neutron diffraction data, the X-ray real space functions were fitted by using the output parameters from neutron diffraction as nominal input parameters. During fitting the input parameters were allowed to vary until an optimised best fit was obtained. The resultant X-ray fits are given in Figure 9, and the corresponding output structural parameters in Table 4. As seen in Table 4, the first peak corresponds to a Si-O correlation with $R_{Si-O} = 1.63$ Å and coordination number between 3.8-3.9 in all the glasses. Ca-F distances of 2.24 - 2.29 Å agree with those from neutron diffraction (Table 3). Ca-O$_{NB}$ distances are ~2.37-2.39 Å,
and the Ca-O_{NB} coordination number decreases from 5.1 to 4.6(2) with CaF_2 content. Ca-O_B distances are ~2.73-2.77 Å with an O_B average coordination decreasing from 1.3 to 1.1 with CaF_2 content. The X-ray partial pair structure factors in Figure 9 are broader than those for neutron diffraction because of a lower real space resolution imposed on Q_{max} = 30 Å⁻¹ compared to neutron diffraction Q_{max} = 50 Å⁻¹, nevertheless there is good agreement between the X-ray and neutron data sets.

4 Discussion

Most bioactive glasses are oxide based, and consequently their bioactivity and dissolution are typically characterised using network connectivity calculations based on the concentration of network formers (i.e. silicon) and oxygen atoms. For example, the network connectivity (NC) of an oxide based silicate glass can be described as

\[NC = 4 - 2Z, \]

where Z, the number of excess oxygen atoms per SiO₂, is given by

\[Z = \frac{c_O}{c_Si} - 2 \]

where c_O and c_Si represent the concentration of oxygen and silicon respectively [9, 34]. However, it is unclear whether these equations remain valid for bioactive glasses containing halides. If fluoride (or chloride) ions directly bind to silicon this will result in network depolymerisation, reducing the network connectivity and increasing the rate of dissolution and consequent (possible) bioactivity.

No evidence was found that CaF_2 addition to silica glasses results in Si-F bonds. Solid state ²⁹Si MAS NMR data do not evidence a chemical shift, indicating that F is not directly bonded to Si. FTIR also shows no evidence of Si-F bonds. Diffraction experiments reveal Ca-F correlations at 2.23-2.27 Å for x = 3.3 - 16.1 (Tables 3 and 4) with Ca-F coordination numbers varying from 0.3 to 1.2 with increasing CaF_2. Ca-O_{NB} and Ca-O_B correlations were observed at 2.37 Å and ~2.71-2.76 Å, consistent with previous reports for halide-free bioactive glasses, and recent publications for calcium chloride containing bioactive glasses. Calcium was surrounded by between 5.3 to 4.5(2) O_{NB}, while the number of O_B decreased from 1.4 to 1.2(1) upon CaF_2 addition (Figure 10). The Ca-O values for the dilute CaF_2 glass (GF 3.3) agree with previous reports for fluoride-free bioactive calcium silicate glasses [48, 49]. For the remaining glasses, a reduction in Ca-O coordination number occurs due to the replacement of O by F. The Ca-O bond distances obtained herein are in good agreement with Ca-O_{NB} and Ca-O_B bond distances at 2.37 Å and 2.78 Å respectively in CaCl_2-CaO-SiO₂ glasses [50, 51], and in halide-free bioactive glasses where Ca-O_{NB} and Ca-O_B distances range from 2.32 to 2.76 Å [9, 34, 48]. Direct comparison of the Ca-O bond distances showed agreement with those in crystalline calcium fluorosilicate (Ca₅Si₂O₇F₂) wherein Ca-O distances lie between 2.28 and 2.76 Å with Ca in a mixed coordination environment of four oxygen and three fluoride atoms [47].

As expected, the average Ca-F coordination number increases with CaF_2 content while the total Ca-O coordination number decreases. The total O and F atoms around calcium remains constant at ~7, in agreement with that of Ca polyhedra in crystalline cuspidine (Ca₅F₂Si₂O₇). To allow direct comparison with fluoride-free bioglasses, the Ca/O/Ca coordination numbers were scaled according to the molar concentrations of F and O; this scaling allows direct comparison with halide-free bioactive glasses systems [9, 34, 50]. The scaled Ca-O_{NB} and Ca-O_B coordination numbers are close to those of GF 3.3 (lowest CaF_2 concentration). Conventional halide free network connectivity models (given in equations 11 and 12) predict a Q² structure for the present fluoride glasses, and therefore assume that fluorine does not interact with the silica network. The (CaO)_{50-x/2}(SiO₂)_{50-x/2}(CaF₂)_{x} series have a Si:O molar ratio of 1:3 ratio (Table 1), consistent with one excess oxygen per SiO₂ unit (i.e. Z=1). It is therefore anticipated that these glasses adopt a Q² structure, if fluorine does not directly bond with silicon.

Bond valence theory can be used to verify reliabilities of the Ca-F and Ca-O bond distances and calcium coordination numbers [52]. The oxidation state of a cation can be
calculated using equation (13).

\[
V_i = \sum_j v_{ij} = \sum_j \exp \left(\frac{R_{ij} - \delta_{ij}}{B} \right)
\]

where \(v_{ij}\) is the bond valence between atom \(i\) and \(j\), and \(B\) is an empirical constant \((0.37)\) and \(R_{ij}\) is the bond valence parameter for the atom pair \(i, j\). \(R_{ij}\) values of \(R_{CaO} = 1.967\ Å\) and \(R_{CaF} = 1.842\ Å\) are reported by Bresse and O’Keefe [53]. \(R_{ij}\) values for \(r_{Ca-NBO}\), \(r_{Ca-BO}\) and \(r_{Ca-F}\) determined from neutron diffraction data are given in Table 4, and calculated valences in Table 5. Values of \(-2.00(2)\) were calculated for all bioactive glass compositions, consistent with \(Ca^{2+}\) cations, and further verifying the reliability of Ca-O and Ca-F bond distances and coordination numbers obtained from neutron and X-ray co-fitting.

5 Conclusions

A combination of neutron, high energy X-ray diffraction, NMR, XPS, FTIR and XRD have been used to study the structure of fluoride bioactive silicate glasses. The Si-O coordination number remained \(-4.0\) for all samples, with no change in the disordering. No distortions in the total correlation functions of \(T^N(r)\), \(T^X(r)\) were observed for SiO\(_4\) tetrahedra following CaF\(_2\) addition, discounting possible direct Si-F bonding. It is therefore concluded that F does not depolymerise the silicate network or change the glass network connectivity, even at very low CaF\(_2\) content. The absence of Si-F bonding was confirmed by the XPS spectra and \(^{29}\)Si NMR spectroscopy, with a \(\delta_{SiO} = -80.3\ ppm\) evidencing undistorted SiO\(_4\) tetrahedra, showing that Si-O-Si connectivity was independent of CaF\(_2\) addition into the glass; CaF\(_2\) does not impact the silicate network. Increasing the CaF\(_2\) concentration decreases the average Ca-O\(_B\) coordination, with a weaker decreases in Ca-O\(_{NB}\); however the total Ca-O/F polyhedra remained constant \(-6.8(1)\). Widely used network connectivity models, developed for oxide based glasses, appear valid for these mixed oxide / fluoride glass systems.

<table>
<thead>
<tr>
<th>Glass code</th>
<th>Coordination numbers Ca-O(_B)</th>
<th>Coordination numbers Ca-O(_{NB})</th>
<th>Coordination numbers Ca-F</th>
<th>Coordination numbers Ca-(O(_{NB})+F)</th>
<th>Valence Sum</th>
</tr>
</thead>
<tbody>
<tr>
<td>GF 3.3</td>
<td>1.3</td>
<td>5.2</td>
<td>0.3</td>
<td>5.5</td>
<td>2.00</td>
</tr>
<tr>
<td>GF 6.6</td>
<td>1.3</td>
<td>5.0</td>
<td>0.5</td>
<td>5.5</td>
<td>2.02</td>
</tr>
<tr>
<td>GF 9.3</td>
<td>1.3</td>
<td>4.7</td>
<td>0.7</td>
<td>5.4</td>
<td>2.00</td>
</tr>
<tr>
<td>GF 11.9</td>
<td>1.3</td>
<td>4.6</td>
<td>0.9</td>
<td>5.5</td>
<td>1.98</td>
</tr>
<tr>
<td>GF 16.1</td>
<td>1.2</td>
<td>4.5</td>
<td>1.2</td>
<td>5.7</td>
<td>2.00</td>
</tr>
</tbody>
</table>

Acknowledgement:
The authors thank STFC for the provision of beam-time at the ISIS pulsed neutron source [1620417], the Diamond Light Source for provision of X-ray beam-time at I15-1 [reference EE16079-1] and the Solid State NMR service, University of Durham, for solid state NMR experiments. The authors would like to thank Dean Kebble for assistance with the I15 High Energy X-ray Diffraction experiments at the Diamond Light Source. The authors also thank R.G. Hill and N. Karpukhina for helpful scientific discussions. This publication is derived from Dr Louis Forto Chungong’s PhD thesis.

Conflict of Interests:
There is no conflict of interest regarding the publication of this paper

Ethical approval:
The conducted research is not related to either human or animals use

References

[9] Martin R. et al., An examination of the calcium and strontium site distribution in bioactive glasses through isomorphic neutron

[23] McLean S. et al., GUDRUN, a computer program developed for analysis of neutron diffraction data. ISIS Facility, Rutherford Appleton Laboratory, Chilton, UK.

